ISC 2018 Computer Practical
Question 1
A Goldbach number is a positive even integer that can be expressed as the sum of two odd primes.
Note: All even integer numbers greater than 4 are Goldbach numbers. Example: 6 = 3 + 3
10 = 3 + 7
10 = 5 + 5
Hence, 6 has one odd prime pair 3 and 3. Similarly, 10 has two odd prime pairs, i.e. 3 and 7, 5 and 5.
Write a program to accept an even integer ‘N’ where N > 9 and N < 50. Find all the odd prime pairs whose sum is equal to the number ‘N’.
Test your program with the following data and some random data: Example 1:
INPUT: N = 14
OUTPUT: PRIME PAIRS ARE:
3, 11
7, 7
Example 2: INPUT: N = 30
OUTPUT: PRIME PAIRS ARE
7, 23
11, 19
13, 17
Example 3: INPUT: N = 17
OUTPUT: INVALID INPUT. NUMBER IS ODD.
Example 4: INPUT: N = 126
OUTPUT: INVALID INPUT. NUMBER OUT OF RANGE.
A Goldbach number is a positive even integer that can be expressed as the sum of two odd primes.
Note: All even integer numbers greater than 4 are Goldbach numbers. Example: 6 = 3 + 3
10 = 3 + 7
10 = 5 + 5
Hence, 6 has one odd prime pair 3 and 3. Similarly, 10 has two odd prime pairs, i.e. 3 and 7, 5 and 5.
Write a program to accept an even integer ‘N’ where N > 9 and N < 50. Find all the odd prime pairs whose sum is equal to the number ‘N’.
Test your program with the following data and some random data: Example 1:
INPUT: N = 14
OUTPUT: PRIME PAIRS ARE:
3, 11
7, 7
Example 2: INPUT: N = 30
OUTPUT: PRIME PAIRS ARE
7, 23
11, 19
13, 17
Example 3: INPUT: N = 17
OUTPUT: INVALID INPUT. NUMBER IS ODD.
Example 4: INPUT: N = 126
OUTPUT: INVALID INPUT. NUMBER OUT OF RANGE.
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
 | 
import java.util.*; 
public class Goldbach 
{ 
    boolean isPrime(int n) 
    { 
        if(n<=1)        //All numbers that are less than or equal to one are  non-prime 
            return false; 
        int i; 
        for(i=2;i<=n/2;i++) 
        { 
            if(n%i==0)  //If any number between 2 and n/2 divides n then n is non prime 
                return false; 
        } 
        /*If any return statement is encountered it terminates the function immediately 
         * therefore the control will come here only when the above return statements are not executed  
         * which can happen only when the number is a prime number. 
         */ 
        return true; 
    } 
    void print(int n) 
    { 
        int i, j; 
        for(i=2;i<=n;i++) 
        { 
            for(j=i;j<=n;j++) 
            { 
                //If i and j are both prime and i+j is equal to n then i and j will be printed 
                if(isPrime(i)&&isPrime(j)&&i+j==n) 
                System.out.println(i+", "+j); 
            } 
        } 
    } 
    public static void main() 
    { 
        Scanner sc = new Scanner(System.in); 
        int n; 
        System.out.println("Enter the limit: "); 
        n = sc.nextInt(); 
        if(n%2==1) 
        {       //Checking for invalid input and terminating the program 
            System.out.println("INVALID INPUT. NUMBER IS ODD."); 
            System.exit(0); 
        } 
        if(n<=9||n>=50) 
        {       //Checking for 2nd invalid input and terminating the program 
            System.out.println("INVALID INPUT. NUMBER OUT OF RANGE."); 
            System.exit(0); 
        } 
        Goldbach ob = new Goldbach();       //Creating object 
        System.out.println("Prime Pairs are: "); 
        ob.print(n); 
    } 
} 
 | 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
 | 
import java.util.*; 
public class Goldbach 
{ 
    boolean isPrime(int n) 
    { 
        if(n<=1)        //All numbers that are less than or equal to one are  non-prime 
            return false; 
        int i; 
        for(i=2;i<=n/2;i++) 
        { 
            if(n%i==0)  //If any number between 2 and n/2 divides n then n is non prime 
                return false; 
        } 
        /*If any return statement is encountered it terminates the function immediately 
         * therefore the control will come here only when the above return statements are not executed  
         * which can happen only when the number is a prime number. 
         */ 
        return true; 
    } 
    void print(int n) 
    { 
        int i, j; 
        for(i=2;i<=n;i++) 
        { 
            for(j=i;j<=n;j++) 
            { 
                //If i and j are both prime and i+j is equal to n then i and j will be printed 
                if(isPrime(i)&&isPrime(j)&&i+j==n) 
                System.out.println(i+", "+j); 
            } 
        } 
    } 
    public static void main() 
    { 
        Scanner sc = new Scanner(System.in); 
        int n; 
        System.out.println("Enter the limit: "); 
        n = sc.nextInt(); 
        if(n%2==1) 
        {       //Checking for invalid input and terminating the program 
            System.out.println("INVALID INPUT. NUMBER IS ODD."); 
            System.exit(0); 
        } 
        if(n<=9||n>=50) 
        {       //Checking for 2nd invalid input and terminating the program 
            System.out.println("INVALID INPUT. NUMBER OUT OF RANGE."); 
            System.exit(0); 
        } 
        Goldbach ob = new Goldbach();       //Creating object 
        System.out.println("Prime Pairs are: "); 
        ob.print(n); 
    } 
} 
 | 
OUTPUT 1:

OUTPUT 2:

Output 3:
